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Various adaptive moving grid techniques for the numerical solution 
of time-dependent partial differential equations have been proposed. 
The precise criterion for grid motion varies, but most techniques will 
attempt to give grids on which the solution of the partial differential 
equation can be well represented. We investigate moving grids on 
which the solutions of the linear heat conduction and viscous Burgers’ 
equation in one space dimension are optimally approximated. Precisely, 
we report the results of numerical calculations of optimal moving grids 
for piecewise linear finite element approximation of PDE solutions in 
the least-squares norm. 0 1992 Academic Press, Inc 

1. INTRODUCTION 

For many time-dependent partial differential equations, 
particularly those which admit solutions with evolving 
sharp features such as fronts, use of moving grids can be 
an extremely useful tool for obtaining accurate numerical 
solutions efficiently. A number of moving grids procedures 
suggested for different problem classes have been [ 1, 12, 14, 
7, 17, 8, 131. 

In this communication we describe the results of a series 
of numerical experiments which are designed to examine 
how good a solution one can hope to achieve by con- 
tinuously adapting the computational grid. The experimen- 
tal setup is simple: piecewise linear finite elements (linear 
splines) on a closed interval in one dimension. The two 
boundary nodes are fixed, and the number of free internal 
nodes is not varied. Precisely, we investigate the problem of 
computing the optimal grid node positions of the best least- 
squares free knot linear spline approximation to the spatial 
solution of a PDE at different times. The loci of such 
optimal positions define an optimal trajectory for each 
node. The ensemble of these nodal trajectories defines the 
optimal moving grid in this norm. Piecewise linear represen- 
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tation is used here simply because it is a common choice. 
The choice of least-squares norm is more arbitrary; 
however, the results of Cullen and Morton [6 3 (see also 
[7,2]) indicate that this may be an appropriate norm at 
least for the finite element method. 

The problem of free knot spline approximation is non- 
linear and great care is required to isolate the global mini- 
mum from potentially many locally optimal fits. In the work 
reported here, we have used a code based on the hybrid 
technique described by Loach and Wathen [lo] for the 
approximation problem. Though no proof of global con- 
vergence exists for this algorithm, there is considerable 
evidence that the solutions it produces are indeed globally 
optimal. The testing of this routine used considerably more 
complicated test functions than the solutions of simple 
PDEs presented here. 

We should emphasize that the computation of the 
optimal approximation is an expensive procedure and relies 
on exact knowledge of the PDE solution. The numerical 
techniques that we use here are therefore not at all suitable 
as practical moving grid methods for partial differential 
equations. 

2. OPTIMAL GRID EXPERIMENT 

It was desired to consider both parabolic and hyperbolic 
problems, thus two test problems were used. 

The first was the parabolic problem of linear heat 
conduction 

24, = u .Yi ) 06x<l, t>O (2.1) 

with homogeneous Neumann boundary conditions, u,, = 0 
(here n is the normal direction to the boundary). In order 
that there be a rapidly computable analytic solution, initial 
data with few Fourier modes are employed. If a single mode 
is used, the PDE solution is simply an exponential decay of 
this original mode. The scale-invariance of the I, best fit 
equations then implies that the nodal positions in the 
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optimal grid are fixed independently of time. The initial data equidistributing grid of n internal points {xi} can be 
are thus chosen as computed to satisfy 

24(x, t = 0) = cos nx + cos 2nx 

so that the analytic solution is simply 

(2.2) 
i 

.r, i l 
w(x) dx = - I n+l 0 

w(x) dx, i = 1, . . . . n. (2.8) 
0 

24(x, t) = e ~ K2f cos 7cx + e p4n2t cos 2nx. (2.3) 

For every instance in time, t, this describes the function to 
be approximated by the optimal free knot linear spline in 
space, x. 

The results of Carey and Dinh [4] show that the free knot 
linear spline interpolation problem in the least-squares 
norm is approximately equivalent to equidistribution of the 
monitor function (f”)‘2’s’. 

Coyle, Flaherty, and Ludwig [S] analyse dynamic 
equidistribution using a time-dependent monitor w(x, t): 

The second problem is the viscous Burgers equation 

24, + uu,x = EU,,, Odxdl, t20 (2.4) 5 
-XI i 

w(x, t) dx = - I 

1 

n+l 0 
w(x, t) dx = c(t), i=l n. 9 . . . . 

0 

which is nearly hyperbolic for small values of E. A particular 
analytic solution of this problem can be found using the 
Cole-Hopf transformation giving 

(2.9) 

4% t) = f($ )3 (2.5) 

where 

$=x-/At-/II (2.6) 

and 

f($) = [p + a + (p - a) e(“@‘“‘]/[ 1 + e(‘@“)]. (2.7) 

E is taken as 0.01, and the arbitrary constants a, B, and p are 
chosen to be 0.4, 0.125, and 0.6, respectively, so that the 
solution is a right-ward moving steep front as t increases. 
The boundary conditions are time-dependent Dirichlet 
conditions taken from this exact solution. 

Equation (2.9) can be solved for the equidistributing grid 
using, for example, Newton iteration at each time step. 
Alternatively, differentiation of (2.9) with respect to time 
gives ordinary differential equations for the grid node 
motion. For dissipative parabolic systems, Coyle et al. show 
that for most choices of w, these ordinary differential 
equations are unstable to small perturbations of the initial 
node positions. Stability conditions on w(x, t) are given 
and a more stable, approximately equidistributing dynamic 
strategy which involves a “relaxation” parameter, 2, is 
proposed. For large values of 1, the grid is more accurately 
equidistributing, but the ordinary differential equations are 
stiff. For small values, one obtains less accuracy and less 
stiffness. 

3. COMPUTATIONAL RESULTS 

For the near hyperbolic problem, the shock paths of the 
corresponding purely hyperbolic problem U, + UU, = 0 are 
likely to be near the optimal trajectories in this approxima- 
tion experiment because of the advective nature of the 
solution. However, for the parabolic heat flow equation, 
no a priori “good” node trajectories are apparent. 

The approximation problem is solved with fixed knots at 
the boundary points 0 and 1, but with free spline values at 
these end points. That is, if x,, = 0, x, + , = 1 are fixed knots 
and x,, x2, . . . . x, are free knots, and ai is the value taken by 
the linear spline S at x, for i= 0, 1, . . . . n + 1, then the 
approximation problem is to minimise IIf - S(I ,zcO,I1 with 
respect to xi, i = 1, 2, . . . . n, and ai, i = 0, 1, . . . . n + 1, wheref 
is the function to be approximated. 

We present results for a typical run on each of the test 
problems. For the linear heat flow problem with 10 internal 
nodes Fig. 1 shows the loci of the optimal nodal trajectories, 
the analytic solution at selected times, and the best free 
knot spline approximants to the analytic solution at these 
instants, all plotted in the u-x plane. That is, we have 
plotted the analytic solution (dotted line) and its best 
least-squares fit (dashed line) at a number of discrete times, 
and at many smaller time intervals we have plotted the 
optimal location in U-X space of the optimal node position. 
These latter are joined by the solid line to indicate the loci 
of the node points which define the optimal grid. 

It is appropriate to comment that many practical 
moving/adaptive grid strategies are based on equidistribu- 
tion of some monitor of the spatial error at each time step. 
That is, if w(x) (20) is a monitor function, then the 

One immediate observation is that the optimal node 
point trajectories undergo a discontinuous jump at two 
particular instances, t N 0.007 and t 1: 0.034 during 
0 <I ~0.091, which is the time interval chosen for the 
experiment. Figure 2 shows only the nodal trajectories for 
the same problem in the x-r plane. The least-squares error 
of the optimal linear spline was found to be continuous 



OPTIMAL MOVING GRIDS 53 

FIG. 1. Linear heat flow equation with 10 free nodes: exact solution 
(dotted line), best tits (dashed line), and optimal nodal trajectories 
(full line) all in U-X space. 

as a function of time as expected, but apparently had 
derivative discontinuities at the two instances when the 
node positions jumped. 

Several other experiments were performed on this heat 
flow problem with qualitatively similar results. We 
comment that there appear to be no “boundary effects” 
caused by our choice of end conditions for this test problem. 

I 

FIG. 2. Linear heat flow equation with 10 free nodes: optimal nodal 
trajectories in x-f space. 

FIG. 3. Viscous Burgers equation with eight free nodes: exact solution 
(dotted line), best tits (dashed line), and optimal nodal trajectories 
(full line) all in U-X space. 

Several experiments for the viscous Burgers equation 
were performed. We present only the results for eight free 
nodes. The graphical results are presented in the same way 
as for the heat flow equation in Fig. 3. 

This experiment was run from t = -0.23, when the steep 
front is just moving into the domain, until t = 1.21. The 
results show the discontinuous movement of the nodes as 
the front enters the domain followed by smooth wave-like 
motion as the front moves across the domain. The 1, error 
is again continuous. We see in this example the effect of the 
solution entering through the domain boundary. Even for 
the corresponding hyperbolic inviscid Burgers equation, a 
boundary condition at this left-hand boundary would be 
required as the characteristics enter the domain here. 

4. CONCLUSIONS 

By computing the moving grids on which the analytic 
solution of two simple partial differential equations can be 
best represented at every instant of time by a linear spline 
with a fixed number of nodes, we find that the optimal 
moving grids have discontinuous nodal trajectories. For 
more complicated time-dependent partial differential equa- 
tion problems, we must expect to obtain similar behaviour 
in general. 

We conclude that global optimal approximation con- 
tinuously in time is not a useful property to try to achieve 
with a moving grid strategy because of the difftculties in 
trying to time integrate discontinuous optimal nodal paths. 
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Our computations lead us to believe that there are likely 
to be smooth locally optimal paths for the problems 
examined and that the discontinuities appear in the globally 
optimal trajectories due to exchange of global optimality 
between local minima. This would suggest two possible 
remedies. 

Periodic regridding would allow computation to proceed 
along smooth nodal trajectories with occasional discon- 
tinuities. Selecting appropriate times to regrid may not be 
straightforward. 

Regularisation may be used to effect a smooth transient 
from one grid to another-we might expect stiffness in the 
time integration if nodal paths were to adjust on a much 
more rapid time scale than the evolution of the partial dif- 
ferential equation solution itself. This appears to be bourne 
out in the work of Coyle et al. [S], where the accuracy/ 
stiffness trade-off is controlled by a relaxation parameter. 

It may be possible to follow locally optimal grid paths 
which are smooth-this could be adequate for some 
problems. For other problems, there must be expected to be 
locally optimal grids on which the error is large. These 
results and observations are of relevance to adaptive 
gridding strategies in the method of lines [ 11, 3, 16, 15, 91. 
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